
© Hitachi, Ltd. 2021. All rights reserved.0

Operations Smart Contract (OpsSC) for Hyperledger Fabric v2.x:
Smart contract-based system operations for blockchain-based systems

Research and Development Group, Hitachi, Ltd.
〇Tatsuya Sato and Taku Shimosawa

Hyperledger Global Forum 2021

https://github.com/hyperledger-labs/fabric-opssc

https://github.com/hyperledger-labs/fabric-opssc

© Hitachi, Ltd. 2021. All rights reserved.1

What is Operations Smart Contract (OpsSC)?

• Background: Blockchain-based system built across multiple organizations (with separated admins)

• Goal: Establishing decentralized system operations across multiple organizations

• Idea: Define a system operational workflow as a smart contract, each organization
(admin / agent program) operates their own nodes according to the smart contract

Network

Org A Org C

OpsSC

Org B

OpsSCOpsSC

0. Invoke TX

of OpsSC

2. Share parameters

1. Establish
consensus

1. Establish
consensus

3. Execute ops

based on SC 3.
Unified operations

3.

Snapshot()
- Cmds: [“zip /ledger…”…
- …

Node

• Value: Inter-organizational operations can be performed (1) without relying on decisions
by a specific organization (2) with uniform procedure/configuration parameters (3) efficiently

© Hitachi, Ltd. 2021. All rights reserved.2

For Hyperledger Fabric v2.x

• Current status of Hyperledger Fabric v2.x

– Individual operational tasks (e.g., peer commands) has been refined,
and SPOT is eliminated (e.g., introduced the new chaincode lifecycle from v2.0)

• Remaining issue: Efficient end-to-end operational workflows using the individual tasks

• The OpsSC for Fabric v2.x: aims to enhance negotiation and automation capabilities

Fabric commandsConfig parameters Nodes

Negotiation Automation
(Decentralized)

Admins

Target area
of OpsSC

e.g., Chaincode deployment:
- Each organization must approve the chaincode definition with the same parameters as the other organizations
- Organizations need to share and coordinate the source code and parameters on the chaincode offline with

other organizations (in typical cases)

(*) SPOT: Single Point of Trust

© Hitachi, Ltd. 2021. All rights reserved.3

Implementation of OpsSC for Hyperledger Fabric v2.x

• Consist of 3 components: OpsSC chaincode, OpsSC API server and OpsSC Agent

– Chaincode provides functions to manage operational workflows and issues chaincode events
including the operational instructions

– API server provides REST API for each org's admin to interact with the OpsSC chaincodes

– Agent for each org executes operations based on the chaincode events to ALL nodes for the org

Peer

OrdererOpsSC
Agent

OpsSC chaincodes

Channel Operations
(channel_ops)

Chaincode Operations
(chaincode_ops)

Org1

Org2

OpsSC
API/Portal

OpsSC
API/Portal

Org3

OpsSC
API/Portal

1. Propose ops

2. Vote for proposal
Peer

OrdererOpsSC
Agent

Peer

OrdererOpsSC
Agent3. Check the num of votes

5. Execute ops
based on event

4. Issue
chaincode
event

5. Execute ops

5. Execute ops

Ph.1: Provide a purpose-specific OpsSC which is essential for managing
the Fabric network (for operating chaincodes and channels)

© Hitachi, Ltd. 2021. All rights reserved.4

OpsSC for operating chaincodes

1. Install

1. Install

1. Install

2. Approve

Org1:

Org2:

Org3: 3. Commit

2. Approve

2. Approve

Check number
of approvals

New Chaincode Lifecycle from v2.0

• Deploy in 3 phases: Install, Approve, Commit

– Eliminated centralized process

CC source code CC definition
(e.g., policy)

PeerAgentOpsSC
chaincodes

Chaincode
Operations

(chaincode_ops)

Org1

Org2

API/Portal

API/Portal

Org3

API/Portal

1. Propose

2. Vote for proposal

PeerAgent

OpsSC for operating chaincodes

3. Download, Install, Approve,
Commit chaincode

3. Download, Install, Approve

3. Download, Install, Approve

PeerAgent

Proposal

1. An org creates a proposal with CC source code and definition

2. Other orgs vote for the proposal shared on the OpsSC

3. When the majority of votes is collected, each agent
automatically deploys the chaincode based on the proposal

(*) CC: Chaincode

Increase operations which are executed by
each org and must use the same parameters

Need to share and negotiate the source code and
parameters with the other orgs (in typical case)

Remaining Issue:

Remaining Issue:

• Streamline end-to-end chaincode deployment

© Hitachi, Ltd. 2021. All rights reserved.5

OpsSC for operating channels

1. Fetch block

3. Sign

Org1:

Org2:

Org3: 4. Update

3. Sign the ConfigUpdate

Check number
of signatures

2. Create ConfigUpdate

Share with other orgsconfigtx

Share with other orgs

• e.g., Add an organization / orderer

• Process: create configtx, collect signatures
from each org and send the configtx to nodes

Process for channel updates across orgs OpsSC for operating channels

protobuf->JSON->modified JSON
->protobuf->extracted delta

Need to share configtx with the other orgs

Remaining Issue:

• Streamline only channel updates across multiple orgs

Orderer
AgentOpsSC

chaincodes

Channel
Operations

(channel_ops)

Org1

Org2

API/Portal

API/Portal

Org3

API/Portal

1. Propose

2. Vote for proposal
Peer

Agent

3. Update channel

Peer
Agent

1. An org creates a human-readable channel update proposal

2. Other orgs vote for the proposal shared on the OpsSC

(Internally convert to configtx with Config Transaction Library)

3. When the majority of votes are collected, one of the agents
automatically updates the channel with the proposed configtx

Peer

Orderer

Orderer

© Hitachi, Ltd. 2021. All rights reserved.6

Org4Org3Org2Org1

Demo: Add a new chaincode, add a new organization using OpsSC

[Demo environment]

- Fabric version: v2.3.0

- Fabric network: test-network in fabric-samples (including some customizations)

- Initial network: 3 orgs (all orgs have their CA, peer, orderer), and mychannel

- OpsSC chaincodes has been deployed on ops-channel

ops-channel

OpsSC chaincode for operating channels (channel_ops)

OpsSC chaincode for operating chaincodes (chaincode_ops)

mychannel

fabcar

[Scenario 1. Add a new CC]

Steps:

1. Org1 proposes fabcar

2. Others votes for it

Result:

fabcar with the proposed
parameters is deployed

[Scenario 2. Add a new org]

Steps:

1. Org4 prepares a CA and issues
certs/keys for peers and orderers

2. Org1 proposes adding Org4
(with Org4’s MSP)

3. Org2, 3 votes for it

(2, 3 are required for each channel)

4. Org4 launches other components
(Need to get genesis from others)

Result:

Org4 is added to all channels

- OpsSC and fabcar are deployed

Peer

Orderer

CA

Ops API server

Ops Agent

Peer

Orderer

CA

Ops API server

Ops Agent

Peer

Orderer

CA

Ops API server

Ops Agent

Peer

Orderer

CA

Ops API server

Ops Agent

© Hitachi, Ltd. 2021. All rights reserved.7

Demo: Add a new chaincode, add a new organization using OpsSC

Portal Screen for OpsSC

Demo movies:
https://github.com/satota2/fabric-opssc-materials#demo-movies

https://github.com/satota2/fabric-opssc-materials#demo-movies

© Hitachi, Ltd. 2021. All rights reserved.8

(2021 April-Sep) (2021 Oct-2022 Mar) (2022 April-)

Feature improvements

New features

Proposal to Fabric

OpsSC Roadmap (Plan)

• Improve the quality of existing features and develop new features for general purpose ops

• Aim to get the part of functionality of OpsSC merged in Hyperledger Fabric

• Java chaincode support
• External chaincode support
• Chaincode initialization support
• Private collection configuration
• Support for minor chaincode

ops (e.g., Disable chaincode)

• Support for both Fabric v2.2 and v2.3
• Sample and integration tests on K8s env.
• Authentication for API server (e.g., JWT)
• Full support for workflow state transitions

(e.g., Rejecting a proposal)
• RBAC/ABAC for OpsSC chaincodes
• Voting policy configuration

Feature improvements
Common parts Chaincode ops

General operations support (Basic)

Chaincode API to get org list

General operations support (Advanced)

Simple voting for admins

Continuous improvements

…
Initial version Initial version

• Import channel information to OpsSC chaincodes from genesis block
• Support for channel mgmt. without system channel (Feature from Fabric v2.3)

• Operation History management (improvement of the implementation)

Channel ops

New features

• Basic (simple workflow)
• Sample for general operations
• Advanced (complex workflow)

General operations support

Proposal to Fabric

Others

• Collaboration with ledger
snapshot API

• …

• Chaincode API to get
organization list

• Simple voting feature
for administrators

• …

Others
• Porting the OpsSC API

server and agent impl.
from Node to Go SDK

• Utilizing Fabric
Gateway

(Depending on situation)

© Hitachi, Ltd. 2021. All rights reserved.9

Summary

• Operations Smart Contract (OpsSC)
– Goal: Establishing decentralized system operations across multiple organizations

– Idea: Define a system operational workflow as a smart contract

• OpsSC for Hyperledger Fabric v2.x is now available:
– https://github.com/hyperledger-labs/fabric-opssc

– You can try some scenarios as same as today’s demos by reading README

• Feedback and contribution welcome!
– Contact

• Hyperledger Rocket.Chat: https://chat.hyperledger.org/channel/fabric-opssc

• e-mail: tatsuya.sato.so@hitachi.com

• Related presentation
– “Extending the Operations Smart Contract for Hyperledger Fabric to Support

Consortia Governance” - Todd Little, Oracle (Thursday June 10, 18:40- CEST)

https://github.com/hyperledger-labs/fabric-opssc
https://chat.hyperledger.org/channel/fabric-opssc
mailto:tatsuya.sato.so@hitachi.com

© Hitachi, Ltd. 2021. All rights reserved.10

Trademarks

• Linux Foundation, Hyperledger, Hyperledger Fabric and Kubernetes are
registered trademarks or trademarks of The Linux Foundation.

• GitHub is a registered trademark or trademark of GitHub Inc.

• All other company names, product names, service names and other proper
nouns are registered trademarks or trademarks of their respective companies.

• The TM and 🄬marks are not shown in the text and figures in this slide.

© Hitachi, Ltd. 2021. All rights reserved.11

© Hitachi, Ltd. 2021. All rights reserved.12

Appendix

© Hitachi, Ltd. 2021. All rights reserved.13

Related Activities

• System chaincode [1]

– Special chaincode which runs within the peer process and it is currently used for
internal processing and configuration-value sharing on the Fabric platform
(e.g., _lifecycle to manage chaincode lifecycle, CSCC to handle changes to a channel config)

– Our OpsSC internally uses system chaincodes to operate the Fabric network

• Fabric Interop Working Group [2]

– Purpose: To promote the interoperability of Fabric network service

• Focusing on a scenario that new organization joins a running Fabric network

– Approach: Create artifacts for the join request (= configtx) with
“Consortium Management Chaincode (CMCC)”

– The concept is very similar with ours although the scope is slightly different

• In fact, current OpsSC for channel ops. reuses part of the CMCC implementation

– Our OpsSC could be positioned as a form or application of the CMCC

[1] https://hyperledger-fabric.readthedocs.io/en/release-2.2/smartcontract/smartcontract.html#system-chaincode
[2] https://wiki.hyperledger.org/display/fabric/Fabric+Interop+Working+Group

