
DIDComm Tunnels
HTTP over DIDComm

Or

DIDComm as HTTP Transport Layer

Filip Burlacu



Outline

• HTTP over DIDComm (RFC 0335)

• Purpose Decorator (RFC 0351)



RFC 0335: HTTP over DIDComm



RFC 0335 Use Cases

• Porting HTTP(S) client-server systems to a DIDComm architecture

• Providing a DIDComm external API for a cloud service

• Making use of the wide universe of HTTP server-side frameworks and 
infrastructure (any REST server, etc) to provide services, while using 
Aries agents for identity management and secure communication



Client-Side

• Client sets up their Agent as a proxy for their application

• Application sends HTTP request to Server, through the Client agent as 
proxy

• Client agent creates DIDComm message from the request, sending 
this to the server.



Server-Side

• Server registers with its agent to receive a certain class of messages
(more on that later)

• Server agent receives a message

• If this message matches the server's registration, the message is 
translated to HTTP and sent to the server



Responses

• Using Transport Return Route, Client agent can specify how the 
response should reach it

• Using Threading, Client agent can determine which client connection 
a response is meant for

• Using Timing, Client agent can specify when it will timeout its client 
app connection



Security

• Agents see the contents of the messages

• Each end of the message flow owns their agent

• Agents and their hosts can be configured to use HTTPS



RFC 0351: Purpose Decorator



RFC 0351 Use Cases

• Using an Aries framework in a client application, the purpose 
decorator can filter messages for client-level protocols

• Using an Aries agent in a server, the agent can serve as the DIDComm 
endpoint for the server API

• Multiple client applications can use a single agent to perform 
transactions on the owner's identity

• The purpose decorator can be used to implement an agent-controller 
interface



RFC 0351: Purpose Filtering

• Non-DIDComm applications register with an agent on a purpose value

• When the agent receives a message which matches the purpose 
value, it sends the message to the application

• The purpose is a JSON array of strings, and there will be a standard 
matching algorithm (exact algorithm tbd) to filter different messages 
to different targets



Open Questions

• How should we handle cases where a message matches the 
registration of multiple applications?
• An auditing service might need to receive all messages, but should not 

prevent other services from handling messages

• If multiple services handle a message, and several of them send responses, 
how does the agent reconcile these?

• How, specifically, should purpose decorator values match to 
registrations?


