
Anonymous credentials 2.0

Michael Lodder, Dmitry Khovratovich

26 February 2019, version 0.2

1 Introduction

1.1 Concept

The concept of anonymous credentials allows users to prove that their identity satisfies certain properties in an
uncorrelated way without revealing other identity details. The properties can be raw identity attributes such
as the birth date or the address, or more sophisticated predicates such as “A is older than 20 years old”.

We assume three parties: issuer, holder, and verifier. From the functional perspective, the issuer gives a
credential C based on identity schema X, which asserts certain properties P about X, to the holder. The
credential consists of attributes represented by integers m1,m2, . . . ,ml. The holder then presents (P, C) to the
Verifier, which can verify that the issuer has asserted that holder’s identity has property P.

1.2 Properties

Credentials are unforgeable in the sense that no one can fool the Verifier with a credential not prepared by the
issuer.

We say that credentials are unlinkable if it is impossible to correlate the presented credential across multiple
presentations. This is implemented by the holder proving with a zero-knowledge proof that he has a credential
rather than showing the credential.

Unlinkability can be simulated by the issuer generating a sufficient number of ordinary unrelated credentials.
Also unlinkability can be turned off to make credentials one-time use so that second and later presentations are
detected.

1.3 Pseudonyms

Typically a credential is bound to a certain pseudonym nym. It is supposed that holder has been registered
as nym at the issuer, and communicated (part of) his identity X to him. After that the issuer can issue a
credential that couples nym and X.

The holder may have a pseudonym at the Verifier, but not necessarily. If there is no pseudonym then the
Verifier provides the service to users who did not register. If the pseudonym nymV is required, it can be
generated from a link secret m1 together with nym in a way that nym can not be linked to nymV . However,
holder is supposed to prove that the credential presented was issued to a pseudonym derived from the same link
secret as used to produce nymV .

An identity owner also can create a policy address I that is used for managing agent proving authorization.
The address are tied to credentials issued to holders such that agents cannot use these credentials without
authorization.

2 Generic notation

• Attribute m is a la-bit unsigned integer.1

• || means byte concatenation e.g. a = 0100, b = 1001, a||b← 01001001

• H() denotes a cryptographic hash function

1Technically it is possible to support credentials with different la, but in Sovrin for simplicity it is set la = 256.

1

3 Protocol Overview

The described protocol supports anonymous credentials given to multiple holders by various issuers, which are
presented to various relying parties.

Various types of anonymous credentials can be supported. In this section, BBS+2-based credentials with
external proofs are described. External proofs are proofs of statements about attribute values, that are performed
in other proof systems and are described in other documents. Examples are range proofs and AuthZ proofs
using the Bulletproofs framework. For this, Holder creates separate commitments, one per attribute value, and
includes the proof of correctness into the BBS+ proof of signature knowledge. Holder then presents external
proofs using these commitments.

The simplest credential lifecycle with one credential, single issuer, holder, and verifier is as follows:

1. Issuer determines a credential schema S: the type of cryptographic signatures used to sign the credentials,
the number l of attributes in a credential, the indices Ah ⊂ {1, 2, . . . , l} of hidden attributes, the public
key Pk, the non-revocation credential attribute number lr and non-revocation public key Pr (Section 4).
Then he publishes it on the ledger and announces the attribute semantics.

2. Holder retrieves the credential schema from the ledger and sets the hidden attributes.

3. Holder requests a credential from issuer. He sends hidden attributes in a blinded form to issuer and agrees
on the values of known attributes Ak = {1, 2, . . . , l} \Ah.

4. Issuer sets the attribute he controls, including the credential index (used for non-revocation) and returns
credential C to holder. Issuer adds the index to the accumulator of issued credentials.

5. Holder approaches verifier. Verifier sends the Proof Request E to holder. The Proof Request contains the
credential schema SE disclosure predicates D (range predicates, inequalities, set (non-)membership), and
AuthZ specification A. Some attributes may be asserted to be the same: mi = mj .

6. Holder checks that the credential pair he holds satisfy the schema SE . He retrieves the non-revocation
witness from the ledger or another storage.

7. Holder creates a proof P that he has a non-revoked credential satisfying the proof request E and sends it
to verifier.

8. Verifier verifies the proof.

If there are multiple issuers, the holder obtains credentials from them independently. To allow credential
chaining, issuers reserve one attribute (usually m1) for a secret value hidden by holder. Holder is supposed
then to set it to the same value in all credentials, whereas Relying Parties require them to be equal along all
credentials. A proof request should specify then a list of schemas that credentials should satisfy in certain order.

2See section 4.3-5.1

2

https://eprint.iacr.org/2016/663.pdf

4 Schema preparation

Credentials should have limited use to only authorized holder entities called agents. Agents can prove autho-
rization to use a credential by including a policy address I in primary credentials as attribute m3.

4.1 Attributes

Issuer defines the credential schema S with l attributes m1,m2, . . . ,ml and the set of hidden attributes DP ⊂
{1, 2, . . . , l}. In Sovrin, m1 is reserved for the link secret of the holder, m2 is reserved for the credential index, m3

is reserved for the policy address I. By default, 1 ∈ DP whereas 2, 3 /∈ DP . Let us denote DI = {1, 2, . . . , l}\DP .

4.2 Credential Cryptographic Setup

In Sovrin, issuers use BBS+ for primary credentials, although other signature types will be supported too. The
BBS+ issuer chooses a pairing friendly curve. Sovrin uses BLS12-381.

1. Issuer sets up a pairing operation on BLS12-381:

e : G1 ×G2 → GT ,

where groups G1,G2,GT have prime order p.

2. For group G1 he prepares:

• Generators ĝ1, h0, h1, . . . , hL.

3. For group G2 he prepares:

• Generator g2.

• Random integer x < p.

• Computes w ← gx2 .

Issuer’s public key for schema S is
pkI = {ĝ1, h0, h1, . . . , hL, g2, w}.

Issuer’s secret key is x.
Therefore, S consists of the following elements:

S = {Φ, DI , pkI}

4.2.1 Proof of Setup Correctness

Issuer also creates the proof of knowledge of the secret key x (if needed):

1. g1 is random element of G1.

2. g2 ← g1
x;

3. r is a random integer < p.

4.

t1 ←gr2; t2 ← g1
r;

c←H(g1||g2||ĝ1||g2||t1||t2);

s←r − cx;

Proof π ← (g1, g2, t1, t2, s, c). To verify the proof, Holder computes

t′1 ← gs2w
c; t′2 ← g1

sg2
c; (1)

and checks if
c = H(g1||g2||ĝ1||g2||t′1||t′2)

3

4.3 Non-revocation Cryptographic Setup

In AnonCreds 2.0 issuers use Merkle trees to track revocation status of credentials. Each credential is given an
index from 1 to L = 2q, and indices of non-revoked credentials are the Merkle tree leafs.

Let V denote the set of non-revoked indices, and H be the Merkle tree hash function.
Then we define

H[i] =

{
H(i); if i ∈ V
0, if i /∈ V

(2)

H[2i,2i+1] = H(H[2i], H[2i+1]); H[2ki,2ki+2k−1] = H(H[2ki,2ki+2k−1−1], H[2ki+2k,2ki+2k−1]). (3)

T = H[1,L]. (4)

Let us denote by +i the addition of non-revoked index i to the tree, and by −i the removal of index i from the
tree T .

4

5 Issuance of Credentials

5.1 Holder Setup

Holder:

• Loads credential schema S.

• Sets hidden attributes {mi}i∈DP
.

• Establishes a connection with issuer and gets 128-bit nonce n0 either from issuer or as a precomputed
value.

Holder prepares data for the credential:

1. Generate random

• s′ mod q

• s̃′ mod q

• {ri}i∈DP

2. Compute taking h0, {hi} from Pk:

U ← (hs
′

0)
∏

i∈DP

hmi
i (5)

3. Compute

Ũ ←(hs̃
′

0)
∏

i∈DP

hrii ; c←H(U ||Ũ ||n0); (6)

ŝ′ ←s̃′ − cs′; {r̂i ←ri − cmi}i∈DP
(7)

4. Send {U, c, ŝ′, {r̂i}i∈DP
} to the issuer.

5.2 Credential Issuance

1. Issuer receives U .

2. Issuer verifies the correctness of holder’s input:

(a) Compute Û ← (U c)(hŝ
′

0)
∏

i∈DI
hr̂ii

(b) Verify c = H(U ||Û ||n0)

3. Issuer determines the attributes he controls: {mi}i∈DI
. Let the credential index be i0, i.e. m2 = i0.

4. Issuer generates random e, s′′ mod q.

5. Issuer computes

B ←ĝ1Uhs
′′

0

∏
i∈DI

hmi
i ; A←B

1
e+x ; (8)

V ← V ∪ {i0}; T ← T + i0. (9)

6. Issuer returns (A, e, s′′, {mi}i∈DI
).

7. Issuer publishes updated V, T on the ledger.

8. Prover computes

B ←ĝ1gi0Uhs
′′

0

∏
i∈DI

hmi
i ; (10)

9. Prover verifies

e(A,wge2)
?
= e(B, g2). (11)

10. Prover stores credential C = {{mi}1≤i≤L, A, e, (s′ + s′′) mod q}.

5

6 Revocation

Issuer identifies a credential to be revoked in the database and retrieves its index i, the accumulator value A,
and valid index set V . Then he proceeds:

1. Set V ← V \ {i};

2. Compute T ← T − i.

3. Publish {V, T }.

6

7 Presentation

7.1 Proof Request

Verifier sends a proof request, where it specifies the ordered set of d credential schemas {S1,S2, . . . ,Sd}, so that
the holder should provide a set of d credentials C that correspond to these schemas.

Let credentials in these schemas contain X attributes in total. Suppose that the request makes to open x1
attributes, makes to prove x2 equalities mi = mj (from possibly distinct schemas) and makes to prove some
external predicates (range or set proofs). Then effectively X − x1 attributes are unknown (denote them Ah),
which form x4 = (X−x1−x2) equivalence classes. Let φ map Ah to {1, 2, . . . , x4} according to this equivalence.
Let Av denote the set of indices of x1 attributes that are disclosed. Let Dr denote the set of indices for which
a predicate proof is computed.

The proof request thus specifies Ah, φ,Av and predicate data:

• For each range proof mi ∈ [a; b] – two statements a ≤ mi < 2n and mi ≤ b ≤ 2n for some n < 255.

• For inequality: statement mi 6= a.

• For non-revocation proof specify Merkle tree T and the attribute responsible for the credential index m2

to prove that m2 ∈ T .

• For proof of membership of attribute mi in some Merkle tree T ′ the statements mi ∈ T ′.

• For proof of membership of attribute mi in set S the statement mi ∈ S.

• For proof of non-membership of attribute mi in sparse Merkle tree T ′ the statements mi ∈ T ′.

• For proof of non-membership of attribute mi in set S the statement mi ∈ S.

• For proof of AuthZ: Merkle tree membership statement I ∈ T .

All these predicates are proven in external proofs, independently of each other.
Along with a proof request, Verifier also generates and sends 128-bit nonce n1. The predicate proof is

computed separately from the credential correctness proof by using the commitments to mi values generated in
the latter.

7.2 Proof Preparation

Holder prepares for each credential:

1. Generate random {m̃i}i/∈D of length 256 bits (group size).

2. Run Algorithm 1 with inputs D, C, {m̃i}i/∈D, Dr. The outputs R, T are added to Rfull, Tfull, and outputs
U ,Sr is stored.

3. Compute
cH ← H(Rfull, Tfull, n0).

4. For each j /∈ D compute m̂j ← m̃j + cHmj mod p. and add {m̂i}i/∈D to Pfull.

5. Run Algorithm 2 with inputs cH , e,U and add output P to Pfull.

6. Send {cH ,Rfull,Pfull, {mi}i∈D} to Verifier.

Holder prepares and sends external proofs:

1. For each predicate 2n > mi ≥ a run Algorithm 4 on the input {n,wi = mi − a, s′i}. The output proof π
is sent to Verifier.

2. For each predicate 2n > a ≥ mi run Algorithm 4 on the input {n,wi = a −mi, s
′
i}. The output proof π

is sent to Verifier.

3. For each inequality mi 6= a run Algorithm 6 on the input {wi = mi − a, s′i}.

4. For each Merkle set membership predicate mi ∈ T run Algorithm 8 on input (mi, s
′
i, T , CO)where CO is

the circuit description for the opening verification. The output proof π is sent to Verifier.

5. For each Merkle set non-membership predicate mi ∈ T run Algorithm 10 on input (mi, s
′
i, T , CO). The

output proof π is sent to Verifier.

7

6. For each linear set membership predicate mi ∈ S run Algorithm 12 on input (mi, s
′
i,S). The output proof

π is sent to Verifier.

7. For each linear set non-membership predicate mi ∈ S run Algorithms 14 on input (mi, s
′
i,S). The output

proof π is sent to Verifier.

7.3 Verification

For the credential C:

1. Run Algorithm 3 with inputs R,P, {mi}i∈D, {m̂i}i/∈D. Add output T̂ to T̂full.

2. Check that
cH = H(Rfull, T̂full, n0)

3. Check that
e(A′, w) = e(A, g2) (12)

For external proof verification:

1. For each predicate 2n > mj ≥ vj run Algorithm 5 with input {n,Z ′i = Zi/h
vi
1 , π}.

2. For each predicate mj ≤ vj < 2n run Algorithm 5 with input {n,Z ′i = hvi1 /Zi, π}.

3. For each inequality mi 6= a run Algorithm 7 on the input {Z ′i = Zih
−a
1 , π}.

4. For each Merkle set membership predicate mi ∈ T verify the Bulletproof proof π by Algorithm 9 on input
(Zi, π,RT , CO).

5. For each linear set membership predicate mi ∈ S verify the Bulletproof proof π by Algorithm 13 on input
(Zi,S, π).

6. For each Merkle set non-membership predicate mi ∈ T verify the Bulletproof proof π by Algorithm 11 on
input (Zi, π,RT , CO).

7. For each linear set non-membership predicate mi ∈ S verify the Bulletproof proof π by Algorithm 15 on
input (Zi,S, π).

8

8 Algorithms

Algorithm 1 Selective disclosure: commitment step

Input: D, C = {{mi}1≤i≤L, A, e, s}, {m̃i}i/∈D, Dr

1. Generate random r1, r2, ẽ, r̃2, r̃3, s̃′;

2. For commitments, generate random {s′i}i∈Dr and compute

Zi ← hmi
1 h

s′i
0 , i ∈ Dr.

3. Compute

• B ← ĝ1h
s
0

∏
1≤i≤L h

mi
i

• A′ ← Ar1

• A← A′−eBr1

• d← Br1hr20

• r3 ← r−11 modp

• s′ ← s− r2r3
• t1 ← A′−ẽhr̃20

• t2 ← dr̃3h−s̃
′

0

∏
i/∈D h

−m̃i
i

• R← ĝ1
∏

i∈D h
mi
i

• t′i ← hm̃i
1 h

s̃′i
0 , i ∈ Dr.

Output: R = {A′, A, d,R, {Zi}i∈Dr}, T = {t1, t2, r1, r2, r3, s′}, U = {ẽ, r̃2, r̃3, s̃′, {s̃′i}i∈Dr},Sr = {s′i}.

Algorithm 2 Selective disclosure: opening step

Input: cH , e, r1, r2, r3, s
′, {m̃i}i/∈D,U = {ẽ, r̃2, r̃3, s̃′}.

1. Compute

ê← ẽ− cHe; r̂2 ← r̃2 − cHr2; r̂3 ← r̃3 − cHr3; ŝ′ ← s̃′ − cHs′;

{ŝ′i ← s̃′i − cHs
′
i}i∈Dr

;

Output: R = {A′, A, d,R}, P = {ê, r̂2, r̂3, ŝ′, {ŝ′i}i∈Dr
}.

9

Algorithm 3 Selective disclosure: Verification step

Input: cH ,R = {A′, A, d,R, {Zi}}, P = {ê, r̂2, r̂3, ŝ′, {ŝ′i}i∈Dr
}, {mi}i∈D, {m̂i}i/∈D

1. Check that A′ 6= 1;

2. Compute

t̂1 ← (A/d)cHA′−êhr̂20 ; (13)

t̂2 ← RcHdr̂3h−ŝ
′

0

∏
i/∈D

h−m̂i
i . (14)

t̂′i ← ZcH
i h

ŝ′i
0 h

m̂i
1 , i ∈ Dr. (15)

Output: T̂ = {t̂1, t̂2, {t̂′i}i∈Dr
}.

Algorithm 4 Range Bulletproofs: proof generation

Input: {n,wi = mi − vi, s′i}

1. Call the Bulletproof range proof routine to prove that Z ′i = hwi
1 h

s′i
0 is a commitment to value wi such that

0 < wi < 2n. See Section 4 of the Bulletproofs paper.

2. The range proof routine returns π.

Output:π.

Algorithm 5 Range Bulletproofs: verification step

Input: {n,Z ′i, π}

1. Call the Bulletproof proof verification routine to verify that Z ′i is a commitment to value wi such that
0 < wi < 2n.

Output: accept if successful or ⊥ on failure

Algorithm 6 Inequality Bulletproofs: proof generation

Input: {wi, s
′
i}

1. Call the Bulletproof inequality gadget to prove that Z ′i = hwi
1 h

s′i
0 is a commitment to value wi such that

wi 6= 0. The idea is to create a pair of constraints valid only for such wi (see the Pinocchio paper).

2. The gadget returns π.

Output:π.

Algorithm 7 Inequality Bulletproofs: verification step

Input: {Z ′i, π}

1. Call the Bulletproof proof verification gadget to verify that Z ′i is a commitment to value wi such that
wi 6= 0.

Output: accept if successful or ⊥ on failure

Algorithm 8 Merkle tree membership Bulletproofs: proof generation

Input: {m, s′i, T , CO}

1. Extract the opening O for m in T .

2. Call the Bulletproof proof gadget on the circuit CO with inputs m,O,RT where RT is the root of T using

the existing commitment Zi = hm1 h
s′i
0 to m.

3. The gadget returns π.

Output:π.

10

https://eprint.iacr.org/2017/1066.pdf

Algorithm 9 Merkle tree membership Bulletproofs: verification step

Input: {Zi, π,RT , CO}

1. Call the Bulletproof proof verification gadget to verify the proof π that Zi is a commitment to value m
that opens to RT using the circuit CO.

Output: accept if successful or ⊥ on failure

Algorithm 10 Merkle tree non-membership Bulletproofs: proof generation

Input: {m, s′i, T , CO}

1. Extract the opening O for ∅ in the place of m in sparse Merkle tree T .

2. Call the Bulletproof proof non-membership gadget on the circuit CO with inputs m,O,RT where RT is

the root of T using the existing commitment Zi = hm1 h
s′i
0 to m.

3. The gadget returns π.

Output:π.

Algorithm 11 Merkle tree non-membership Bulletproofs: verification step

Input: {Zi, π,RT , CO}

1. Call the Bulletproof proof verification gadget to verify the proof π that Zi is a commitment to value m
such that ∅ opens to sparse Merkle root RT in the position of m using the circuit CO.

Output: accept if successful or ⊥ on failure

Algorithm 12 Linear set memberships: proof generation

Input: mj , s
′
j , set S of length n

1. Create bit vector v ∈ {0, 1}n with the index of mj in set S to 1 and all others to 0.

2. Generate random values {ri mod p}1≤i≤n

3. Generate random value rj mod p

4. Compute commitment vector using bullet proof generators g,h: a← gai
i h

ri
i

5. Compute commitment for value using bulletproof value generators: V ← gmjhrj

6. Perform other steps to get proof π.

Output: π.

Algorithm 13 Linear membership Bulletproofs: verification

Input: {Zi, π,S}

1. Call the Bulletproof proof verification gadget to verify the proof π that Zi is a commitment to value
m ∈ S.

Output: accept if successful or ⊥ on failure

Algorithm 14 Linear non-membership Bulletproofs: proof generation

Input: {mi, s
′
i,S}

1. Call the Bulletproof proof generation gadget to create proof π that Zi is a commitment to value m that
is not in the set S. Idea: show that for each element of S it is not equal to the committed value using the

existing commitment Zi = hm1 h
s′i
0 to m.

2. The gadget returns π.

Output: π

11

Algorithm 15 Linear non-membership Bulletproofs: proof verification

Input: {Zi, π,S}

1. Call the Bulletproof proof verification gadget to verify the proof π that Zi is a commitment to value m
that is not in the set S. Idea: show that for each element of S it is not equal to the committed number.

Output: accept if successful or ⊥ on failure

12

	Introduction
	Concept
	Properties
	Pseudonyms

	Generic notation
	Protocol Overview
	Schema preparation
	Attributes
	 Credential Cryptographic Setup
	Proof of Setup Correctness

	Non-revocation Cryptographic Setup

	Issuance of Credentials
	Holder Setup
	 Credential Issuance

	Revocation
	Presentation
	Proof Request
	Proof Preparation
	Verification

	Algorithms

